skip to main content


Search for: All records

Creators/Authors contains: "Rost, Sebastian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anomalies along Earth’s core can be explained by former oceanic seafloor that descended 3000 km to the base of the mantle. 
    more » « less
  2. Abstract

    Ultralow‐velocity zones (ULVZs) have been studied using a variety of seismic phases; however, their physical origin is still poorly understood. Short period ScP waveforms are extensively used to infer ULVZ properties because they may be sensitive to all ULVZ elastic moduli and thickness. However, ScP waveforms are additionally complicated by the effects of path attenuation, coherent noise, and source complexity. To address these complications, we developed a hierarchical Bayesian inversion method that allows us to invert ScP waveforms from multiple events simultaneously and accounts for path attenuation and correlated noise. The inversion method is tested with synthetic predictions which show that the inclusion of attenuation is imperative to recover ULVZ parameters accurately and that the ULVZ thickness and S‐wave velocity decrease are most reliably recovered. Utilizing multiple events simultaneously reduces the effects of coherent noise and source time function complexity, which in turn allows for the inclusion of more data to be used in the analyses. We next applied the method to ScP data recorded in Australia for 291 events that sample the core‐mantle boundary beneath the Coral Sea. Our results indicate, on average, ∼12‐km thick ULVZ with ∼14% reduction in S‐wave velocity across the region, but there is a greater variability in ULVZ properties in the south than that in the north of the sampled region. P‐wave velocity reductions and density perturbations are mostly below 10%. These ScP data show more than one ScP post‐cursor in some areas which may indicate complex 3‐D ULVZ structures.

     
    more » « less
  3. Abstract

    Much of our knowledge on deep Earth structure is based on detailed analyses of seismic waveforms that often have small amplitude arrivals on seismograms; therefore, stacking is essential to obtain reliable signals above the noise level. We present a new iterative stacking scheme that incorporates Historical Interstation Pattern Referencing (HIPR) to improve data quality assessment. HIPR involves comparing travel‐time and data quality measurements between every station for every recorded event to establish historical patterns, which are then compared to individual measurements. Weights are determined based on the individual interstation measurement differences and their similarity to historical averages, and these weights are then used in our stacking algorithm. This approach not only refines the stacks made from high‐quality data but also allows some lower‐quality events that may have been dismissed with more traditional stacking approaches to contribute to our study. Our HIPR‐based stacking routine is illustrated through an application to core‐reflected PcP phases recorded by the Transantarctic Mountains Northern Network to investigate ultra‐low velocity zones (ULVZs). We focus on ULVZ structure to the east of New Zealand because this region is well‐sampled by our data set and also coincides with the boundary of the Pacific Large Low Shear Velocity Province (LLSVP), thereby allowing us to further assess possible ULVZ‐LLSVP relationships. The HIPR‐refined stacks display strong ULVZ evidence, and associated synthetic modeling suggests that the ULVZs in this region are likely associated with compositionally distinct material that has perhaps been swept by mantle convection currents to accumulate along the LLSVP boundary.

     
    more » « less
  4. Earth’s magnetic field is generated by turbulent motion in its fluid outer core. Although the bulk of the outer core is vigorously convecting and well mixed, some seismic, geomagnetic and geodynamic evidence suggests that a global stably stratified layer exists at the top of Earth’s core. Such a layer would strongly influence thermal, chemical and momentum exchange across the core–mantle boundary and thus have important implications for the dynamics and evolution of the core. Here we argue that the relevant scenario is not global stratification, but rather regional stratification arising solely from the lateral variations in heat flux at the core–mantle boundary. Using our extensive suite of numerical simulations of the dynamics of the fluid core with het- erogeneous core–mantle boundary heat flux, we predict that thermal regional inversion layers extend hundreds of kilometres into the core under anomalously hot regions of the lowermost mantle. Although the majority of the outermost core remains actively convecting, sufficiently large and strong regional inversion layers produce a one-dimensional temperature profile that mimics a globally stratified layer below the core–mantle boundary—an apparent thermal stratification despite the average heat flux across the core–mantle boundary being strongly superadiabatic. 
    more » « less
  5. Given limited seismic coverage of the lowermost mantle, less than one-fourth of the core-mantle boundary (CMB) has been surveyed for the presence of ultra-low velocity zones (ULVZs). Investigations that sample the CMB with new geometries are therefore important to further our understanding of ULVZ origins and their potential connection to other deep Earth processes. Using core-reflected ScP waves recorded by the recently deployed Transantarctic Mountains Northern Network in Antarctica, our study aims to expand ULVZ investigations in the southern hemisphere. Our dataset samples the CMB in the vicinity of New Zealand, providing coverage between an area to the northeast, where ULVZ structure has been previously identified, and another region to the south, where prior evidence for an ULVZ was inconclusive. This area is of particular interest because the data sample across the boundary of the Pacific Large Low Shear Velocity Province (LLSVP). The Weddell Sea region near Antarctica is also well sampled, providing new information on a region that has not been previously studied. A correlative scheme between 1-D synthetic seismograms and the observed ScP data demonstrates that ULVZs are required in both study regions. Modeling uncertainties limit our ability to definitively define ULVZ characteristics but also likely indicate more complex 3-D structure. Given that ULVZs are detected within, along the edge of, and far from the Pacific LLSVP, our results support the hypothesis that ULVZs are compositionally distinct from the surrounding mantle. ULVZs may be ubiquitous along the CMB; however, they may be thinner in many regions than can be resolved by current methods. Mantle convection currents may sweep the ULVZs into thicker piles in some areas, pushing these anomalies toward the boundaries of LLSVPs. 
    more » « less
  6. Given limited seismic coverage of the lowermost mantle, less than one-fourth of the core-mantle boundary (CMB) has been surveyed for the presence of ultra-low velocity zones (ULVZs). Investigations that sample the CMB with new geometries are therefore important to further our understanding of ULVZ origins and their potential connection to other deep Earth processes. Using core-reflected ScP waves recorded by the recently deployed Transantarctic Mountains Northern Network in Antarctica, our study aims to expand ULVZ investigations in the southern hemisphere. Our dataset samples the CMB in the vicinity of New Zealand, providing coverage between an area to the northeast, where ULVZ structure has been previously identified, and another region to the south, where prior evidence for an ULVZ was inconclusive. This area is of particular interest because the data sample across the boundary of the Pacific Large Low Shear Velocity Province (LLSVP). The Weddell Sea region near Antarctica is also well sampled, providing new information on a region that has not been previously studied. A correlative scheme between 1-D synthetic seismograms and the observed ScP data demonstrates that ULVZs are required in both study regions. Modeling uncertainties limit our ability to definitively define ULVZ characteristics but also likely indicate more complex 3-D structure. Given that ULVZs are detected within, along the edge of, and far from the Pacific LLSVP, our results support the hypothesis that ULVZs are compositionally distinct from the surrounding mantle. ULVZs may be ubiquitous along the CMB; however, they may be thinner in many regions than can be resolved by current methods. Mantle convection currents may sweep the ULVZs into thicker piles in some areas, pushing these anomalies toward the boundaries of LLSVPs. 
    more » « less
  7. Given limited seismic coverage of the lowermost mantle, less than one-fourth of the core-mantle boundary (CMB) has been surveyed for the presence of ultra-low velocity zones (ULVZs). Investigations that sample the CMB with new geometries are therefore important to further our understanding of ULVZ origins and their potential connection to other deep Earth processes. Using core-reflected ScP waves recorded by the recently deployed Transantarctic Mountains Northern Network in Antarctica, our study aims to expand ULVZ investigations in the southern hemisphere. Our dataset samples the CMB in the vicinity of New Zealand, providing coverage between an area to the northeast, where ULVZ structure has been previously identified, and another region to the south, where prior evidence for an ULVZ was inconclusive. This area is of particular interest because the data sample across the boundary of the Pacific Large Low Shear Velocity Province (LLSVP). The Weddell Sea region near Antarctica is also well sampled, providing new information on a region that has not been previously studied. A correlative scheme between 1-D synthetic seismograms and the observed ScP data demonstrates that ULVZs are required in both study regions. Modeling uncertainties limit our ability to definitively define ULVZ characteristics but also likely indicate more complex 3-D structure. Given that ULVZs are detected within, along the edge of, and far from the Pacific LLSVP, our results support the hypothesis that ULVZs are compositionally distinct from the surrounding mantle. ULVZs may be ubiquitous along the CMB; however, they may be thinner in many regions than can be resolved by current methods. Mantle convection currents may sweep the ULVZs into thicker piles in some areas, pushing these anomalies toward the boundaries of LLSVPs. 
    more » « less
  8. Given limited seismic coverage of the lowermost mantle, less than one-fourth of the core-mantle boundary (CMB) has been surveyed for the presence of ultra-low velocity zones (ULVZs). Investigations that sample the CMB with new geometries are therefore important to further our understanding of ULVZ origins and their potential connection to other deep Earth processes. Using core-reflected ScP waves recorded by the recently deployed Transantarctic Mountains Northern Network in Antarctica, our study aims to expand ULVZ investigations in the southern hemisphere. Our dataset samples the CMB in the vicinity of New Zealand, providing coverage between an area to the northeast, where ULVZ structure has been previously identified, and another region to the south, where prior evidence for an ULVZ was inconclusive. This area is of particular interest because the data sampleacross the boundary of the Pacific Large Low Shear Velocity Province (LLSVP). The Weddell Sea region near Antarctica is also well sampled, providing new information on a region that has not been previously studied. A correlative scheme between 1-D synthetic seismograms and the observed ScP data demonstrates that ULVZs are required in both study regions. Modeling uncertainties limit our ability to definitively define ULVZ characteristics but also likely indicate more complex 3-D structure. Given that ULVZs are detected within, along the edge of, and far from the Pacific LLSVP, our results support the hypothesis that ULVZs are compositionally distinct from the surrounding mantle. ULVZs may be ubiquitous along the CMB; however, they may be thinner in many regions than can be resolved by current methods. Mantle convection currents may sweep the ULVZs into thicker piles in some areas, pushing these anomalies toward the boundaries of LLSVPs. 
    more » « less
  9. Abstract

    The locations of ultralow‐velocity zones (ULVZs) at the core‐mantle boundary (CMB) have been linked to a variety of features including hot spot volcanoes and large low‐velocity province (LLVP) boundaries, yet only a small portion of the CMB region has been probed for ULVZ existence. Here we present a new map of lower mantle heterogeneity locations using a global collection of highly anomalous SPdKS recordings based on a dataset of more than 58,000 radial component seismograms, which sample 56.9% of the CMB by surface area. The inference of heterogeneity location using the SPdKS seismic phase is challenging due to source‐versus receiver‐side ambiguity. Due to this ambiguity, we conducted an inversion using the principle of parsimony. The inversion is conducted using a genetic algorithm which is repeated several thousand times in order to construct heterogeneity probability maps. This analysis reveals that at probabilities0.5, 0.25, and 0.125 up to 1.3%, 8.2%, or 19.7% of the CMB may contain ULVZ‐like heterogeneities. These heterogeneities exist in all lower mantle settings, including both high‐ and low‐velocity regions. Additionally, we present evidence that the Samoan ULVZ may be twice as large as previously estimated, and also present evidence for the existence of additional mega‐sized ULVZs, such as a newly discovered ULVZ located to the east of the Philippines. We provide new evidence for the ULVZ east of the Philippines through an analysis of ScP records.

     
    more » « less